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Abstract
Based on (1) the spectral resolution of the energy operator; (2) the linearity
of correspondence between physical observables and quantum self-adjoint
operators; (3) the definition of conjugate coordinate–momentum variables in
classical mechanics; and (4) the fact that the physical point in phase space
remains unchanged under (canonical) transformations between one pair of
conjugate variables to another, we are able to show that 〈ts |Es〉, the proper-time
rest-energy transformation matrices, are given as a exp(−iEsts/h̄), from which
we obtain the proper-time rest-energy evolution equation ih̄ ∂

∂ts
|�〉 = Ês |�〉.

For special relativistic situations this equation can be reduced to the usual
ih̄ ∂

∂t
|�〉 = Ê|�〉 dynamical equations, where t is the ‘reference time’ and E is

the total energy. Extension of these equations to accelerating frames is then
provided.

PACS number: 03.65.Ta

1. Introduction

Attempts at proving the dynamical equations of quantum mechanics (especially the time-
dependent Schrödinger equation), rather than assuming them [1], as did Schrödinger himself
[2], or postulating the H → ih̄∂/∂t correspondence [3, 4], abound in the literature. Most of
these approaches achieve this purpose by showing that the dynamical equations are equivalent
to other assumed postulates, such as stochastic dynamics [5–7], path-integrals [8–10] or
Galilean symmetry [11]. Some [12] attempt to treat time within the framework of the time-
independent Schrödinger equation, as a semiclassical quantity associated with the dynamics of
a large semiclassical bath coupled to the quantum system of interest. This approach neglects
the vast literature and experimental evidence [13] regarding the temporal evolution of wave
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packets in an isolated system which cannot be described by the time-independent Schrödinger
equation alone.

Recently [14] we have shown that the [q̂l , p̂l] = ih̄ commutation relations between any
generalized coordinate operator q̂l and its conjugate momentum operator p̂l can be derived
from the very definition of conjugate variables in classical mechanics. The derivation made
use of the invariance of the free particles’ kinetic energy and other invariant operators to
(canonical) transformations between one pair of conjugate variables and another. In the
present paper we extend this approach to proving the relativistic (and non-relativistic)

ih̄
∂

∂ts
|�〉 = Ês |�〉 (1)

quantum evolution equations, with ts being the proper time and Ês the rest-energy operator.
In the coordinate–momentum case the p̂ = −ih̄∂/∂x equation analogous to equation (1)

is equivalent to the [x, p] = ih̄ commutation relation. This cannot be easily done in the
time–energy case because of our seeming inability to construct a self-adjoint operator for the
‘time’. In particular, it was claimed by Pauli [15], that if such an operator existed it would
imply that its conjugate operator, namely the Hamiltonian, would have a purely continuous
spectrum and be unbounded from below. More specifically, if there exists a self-adjoint time
operator t̂ conjugate to the Hamiltonian Ĥ operator, such that [t̂ , Ĥ ] = −ih̄, then if |�Ei

〉 is
an eigenstate of Ĥ satisfying Ĥ |�Ei

〉 = Ei |�Ei
〉, |�Ei−β〉 ≡ exp(iβt̂/h̄)|�Ei

〉 would also be
an eigenstate of Ĥ with an eigenvalue Ei − β. Since β is arbitrary this would imply that the
spectrum of Ĥ is continuous and unbounded from below.

Subsequently it was shown [16] that Pauli’s arguments were flawed and that for a
bounded time operator a conjugate Hamiltonian with a point spectrum can exist. A simplified
way of explaining this flaw is to say that if 〈x|�Ei

〉 is square-integrable, for an arbitrary
Ei − β, 〈x|�Ei−β〉 is not square-integrable as it diverges either as x → ∞ or as x → −∞. It
is therefore not part of the spectrum of the Hamiltonian.

In what follows we define a bounded, self-adjoint ‘proper-time’ operator, based on
the classical ‘proper time’ in different inertial frames. This operator assumes the form

t̂s ≡ t
(
1 − v̂2

s

/
c2

) 1
2 , where t is a parameter representing the time measured in one of the

frames, designated the ‘reference’ frame, and v̂s is the velocity operator of the s-frame. We
argue that in quantum mechanics there is a natural spread in the observed ts values due to the
uncertainty in the s-frame velocity.

After identifying below the variable conjugate to ts in relativistic mechanics as −Es ,
where Es is the rest energy of particle s, we make use of canonical invariance to prove the
〈ts |Es〉 = a exp(−iEsts/h̄) identity, a special case of which being 〈t |E〉 = a exp(−iEt/h̄),
where E is the total energy, leading to equation (1). Thus, together with the ‘ab initio’
derivation of the coordinate representation of the momentum operator presented in [14], we
now have a more firmly based, reduced number of axioms, theory of relativistic quantum
evolution.

2. Review of the proof of the Cartesian [x̂, p̂] commutation relations in relativistic
quantum mechanics

In order to motivate what follows we briefly review part of [14] in which the Cartesian [x̂, p̂]
commutation relations of relativistic quantum mechanics were derived. We consider two free
particles A and B of equal rest mass mA = mB whose Cartesian extensions on the x-axis are

2
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denoted as xA and xB . The momenta conjugate to these coordinates are obtained from the free
Lagrangian [19]

L = −mc2
[(

1 − β2
A

) 1
2 +

(
1 − β2

B

) 1
2
]

(2)

where βA(B) = vA(B)/c, as

ps = ∂L/∂vs = mvs

/(
1 − β2

s

) 1
2 , s = A,B. (3)

We now make a canonical transformation to the X1(2) = (xA ± xB)/
√

2, variables, with
the associated velocities V1(2) = Ẋ1(2), being given as, V1(2) = (vA ± vB)/

√
2. Substituting

the velocity relations into equation (2) we have that

−L/(mc) =
(

c2 − (V1 + V2)
2

2

) 1
2

+

(
c2 − (V1 − V2)

2

2

) 1
2

, (4)

from which we obtain that the momenta conjugate to X1 and X2 are given as

P1 = ∂L
∂V1

= pA + pB√
2

, P2 = ∂L
∂V2

= pA − pB√
2

. (5)

We now consider the sum of the squares of the energies of the two particles,

T = T 2
A + T 2

B = c2
{
2m2c2 + p2

A + p2
B

}
. (6)

It is easy to show that T is invariant to the canonical transformation to the X1 and X2 variables
and can be written as T = c2

{
2m2c2 + P 2

1 + P 2
2

}
.

Since T̂ , the quantum operator corresponding to T , is a function of the p̂A and p̂B

operators, which commute between themselves, and is also a function of the P̂1 and P̂2

operators, which also commute between themselves, it must commute with all four momenta,

[T̂ , p̂A] = [T̂ , p̂B] = [T̂ , P̂1] = [T̂ , P̂2] = 0.

This fact, plus the separable form of T̂ , allows us to write the eigenstates of T̂ in two different
ways

〈xA|pA〉〈xB |pB〉 = 〈X1|P1〉〈X2|P2〉. (7)

Choosing two particular momenta, pA = p and pB = −p, and two particular positions
xA = x and xB = −x, we have for these values that P1 = 0, P2 = √

2p,X1 = 0, X2 = √
2x.

Equation (7) now assumes the special form,

〈x|p〉〈−x| − p〉 = 〈0|0〉〈
√

2x|
√

2p〉. (8)

Obviously the 〈−x| − p〉 amplitude is independent of the definition of our coordinate system.
Thus, if we re-define −x to be x, forcing by equation (3) (since the Lagrangian remains
invariant to this re-definition), −p → p, we obtain that 〈−x| − p〉 = 〈x|p〉, and it follows
from equation (8) that

〈0|0〉〈
√

2x|
√

2p〉 = (〈x|p〉)2 , or that, 〈
√

2x|
√

2p〉′ = (〈x|p〉′)2, (9)

where 〈x|p〉′ ≡ 〈x|p〉/〈0|0〉.
Defining δp ≡ p/2n/2, and δx ≡ x/2n/2, we have from equation (9) that

〈x|p〉′ = 〈2n/2δx |2n/2δp〉′ = (〈δx |δp〉′)2n

.

Hence,

log〈x|p〉′ = 2n/2δx2n/2δpα′(δx, δp) = pxα′(δx, δp),

3



J. Phys. A: Math. Theor. 41 (2008) 175303 M Shapiro

where

α′(δx, δp) = log〈δx |δp〉′/(δpδx).

For every p and x values we can find an n value, such that δx and δp are sufficiently small so
that α′(δx, δp) is sufficiently close to its limiting value

α = lim
δp→0,δx→0

log〈δx |δp〉′
δxδp

= ∂2 log〈x|p〉′
∂x∂p

∣∣∣∣
x,p=0

.

Hence

log(〈x|p〉′) = αpx or 〈x|p〉 = 〈0|0〉 exp(αpx).

In order for 〈x|p〉 to be normalizable to δ(x − x ′), namely∫ ∫
dp dx ′〈x|p〉〈p|x ′〉 = 1, (10)

α must be a purely imaginary number α = iγ , (otherwise 〈x|p〉 would diverge, either as
x → ∞ or as x → −∞). By identifying γ with 1/h̄, we obtain that

〈x|p〉 = 〈0|0〉 exp(iγpx) = (2πh̄)−1/2 exp(ipx/h̄) (11)

where the identification of the normalization factor 〈0|0〉 as (2πh̄)−1/2 stems from
equation (10). Using equation (11) it is easy to show [3, 20] that

〈x ′|p̂|x〉 = −ih̄
∂

∂x
δ(x − x ′), (12)

and that

[x̂, p̂] = ih̄.

3. The time–energy transformation and the quantum evolution equation

We now wish to extend the proof presented in the previous section to the time–energy domain.
In classical mechanics the use of canonical transformations to treat the time variable as a
coordinate is well established [21]. As discussed above, the situation in quantum mechanics is
not so straightforward because one has to be careful about the type of time that can be treated
as an operator. We now show that there are no problems associated with treating the ‘proper
time’ as a coordinate and quantizing it.

For an inertial frame, in which the velocity is constant, the classical ‘proper time’ is given1

as

ts = t
(
1 − v2

s

/
c2

) 1
2 , (13)

where t is the time in (an arbitrarily chosen) ‘reference’ Lorentz frame and vs ≡ dxs/dt is the
velocity of the s-frame relative to the reference frame. Alternatively we could work with the
Lorentz transformed time

ts = (t − xsvs/c
2)

/(
1 − v2

s

/
c2) 1

2 . (14)

We can define a self-adjoint bounded ‘proper-time’ operator by replacing vs in equation (13)
by the velocity operator v̂s . Thus,

t̂s = t
(
1 − v̂2

s

/
c2

) 1
2 . (15)

1 [19], p 300.

4
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The arguments presented below are independent of the exact form of the velocity-squared
v̂2

s operator. However for completeness we may, following the classical relativistic relation
between the velocity and momentum,

v2
s

/
c2 = p2

s c
2
/(

p2
s c

2 + E2
s

)
,

where Es = msc
2 is the rest energy of body s, define such an operator. In order to guarantee

its self-adjointness, we define a v̂2
s operator within the usual rigged Hilbert space formulation

of quantum mechanics [17, 18], as

v̂2
s

/
c2 = 1

2

[
p̂2

s c
2(p̂2

s c
2 + Ê2

s

)−1
+

(
p̂2

s c
2 + Ê2

s

)−1
p̂2

s c
2]. (16)

For fixed t there are uncertainties associated with the proper times due to the quantum-
mechanical uncertainties in v̂s . We also note that for t > 0, the spectrum of t̂s is bounded from
above by t (when vs = 0) and from below by 0 (when vs = c), with the upper bound becoming
the lower bound and vice versa when t < 0. The ‘proper-time’ operator does not suffer from
singularities when the momentum ps = 0, besetting such operators as the non-relativistic
‘measurement-time’ or ‘arrival-time’ [22–25] or the ‘tempus’ operator [26].

It follows from equation (13) that ṫs , the classical ‘velocity of time’ is given as

ṫs ≡ dts/dt = (
1 − β2

s

) 1
2 .

We note that for a constant velocity the transformed time of equation (14) yields the same
form for the ‘velocity of time’.

The Lagrangian of equation (2) of two non-interacting A and B particles can be written as

L = −EAṫA − EBṫB,

where EA(B) = mA(B)c
2 is the rest energy of particle A(B) in the reference frame. The

classical (4th) momentum conjugate to ts is obtained by the usual definition as

pts = ∂L/∂ṫs = −Es, s = A,B.

We can now canonically transform the proper times of bodies A and B to two new
variables, defined as t1(2) = (tA ± tB)/2. Naturally ṫ1(2) = (ṫA ± ṫB)/2. Hence when we
choose EA = EB = Es

L = −Es(ṫA + ṫB) = −2Esṫ1.

Therefore, the conjugate momenta to t1 and t2 are given as

pt1 = ∂L/∂ṫ1 = −2Espt2 = ∂L/∂ṫ2 = 0.

The invariant we are now seeking is simply −2Es since

−2Es = ptA + ptB = pt1 + pt2 .

Because Es is a function of ptA and ptB and also of pt1 and pt2 , Ês , the (rest-energy) operator
corresponding to it, commutes with all four momentum operators. Hence we can write the
eigenstates of −2Ês in two different ways,

〈tA|ptA, n〉〈tB |ptB , n〉 = 〈t1|pt1 , n〉〈t2|pt2 , n〉, (17)

where n is any other quantum number needed to specify the state. In the present construction
we choose on purpose just a single n quantum number, which therefore remains the same upon
execution of the canonical transformation. Henceforth, we omit the explicit mention of n but
it should be considered as present.

Choosing two particular eigenvalues, ptA = ptB ≡ −Es we have that pt1 = −2Es, pt2 =
0, with equation (17) now reading,

〈tA| − Es〉〈tB | − Es〉 = 〈(tA + tB)/2| − 2Es〉〈tA − tB |0〉.
5
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If we now also choose the particular values tA = tB ≡ ts we have that

〈ts | − Es〉〈ts | − Es〉 = 〈ts | − 2Es〉〈0|0〉.
we obtain that

〈ts | − 2Es〉′ = (〈ts | − Es〉′)2,

where

〈ts | − Es〉′ ≡ 〈ts | − Es〉/〈0|0〉.
It immediately follows, by the same type of arguments presented in section 1, that

〈ts | − Es〉 = a exp(−Esf (ts)), (18)

where f (ts) is only a function of ts .
If instead of choosing EA = EB = Es , we now choose EA = Es and EB = 0 (e.g., the

second particle is a photon) we have that

L = −EsṫA = −Es(ṫ1 + ṫ2),

and that

ptB = 0 and ptA = pt1 = pt2 = −Es.

It follows that

〈tA| − Es〉〈tB |0〉 = 〈t1| − Es〉〈t2| − Es〉.
Choosing tA = 2ts and tB = 0 we have that t1 = ts and t2 = ts , hence

〈2ts | − Es〉〈0|0〉 = 〈ts | − Es〉〈ts | − Es〉 = (〈ts | − Es〉)2.

We now obtain that

〈ts | − Es〉 = a exp(tsg(−Es)). (19)

By equating equations (18) and (19) we obtain that −g(−Es)/Es = f (ts)/ts = α, a constant,
which means that g(−Es) = −αEs and

〈ts |Es〉 = a exp(−αEsts). (20)

We now show that the constant α must be a purely imaginary number. Because the [0, t]
boundaries of ts are finite, we cannot argue, as we did in the coordinate–momentum case
of section 1, where the boundaries were infinite, that α must be a purely imaginary number
because otherwise the amplitude would diverge at the boundaries. Rather, in the present case,
α must be purely imaginary to maintain Lorentz invariance. This is because if α had a real part
the |〈ts |Es〉| = |a| exp(−Re(α)Ests) distribution would be maximal (minimal) at ts = t , for
Re(α) > 0(Re(α) < 0), giving rise to different physical observations for different definitions
of t, i.e., different reference frames, in clear contradiction to Lorentz invariance. Thus the
constant α must be a purely imaginary number α = iγ . By again identifying γ with 1/h̄,
(which is in fact simply the definition of the scaling of Es) we obtain that,

〈ts |Es〉 = 〈0|0〉 e−iEs ts/h̄. (21)

Three comments are now in order:

(1) The above derivation applies even to a truly structureless elementary particle for which
the rest energy is just a single number. The reason is that in this case equation (19) still
holds because ts is definitely a continuous variable and the infinitesimal change in it,
which is part of our proof, is perfectly permissible. Because there is now only a single
value of Es , the function g(−Es) now becomes a simple number gs , and we define Es as
Es = −gsh̄, with equation (21) immediately following.

6
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(2) The above proof also holds for bound states. In this case, the energies may be varied by
subjecting the particle to an external field and changing the strength of this external field.
Once equation (21) is proved in the presence of the field, we can adiabatically switch off
the field while establishing equation (21) for smaller and smaller external fields, until we
reach the limit when the external field is zero.

(3) The spectrum of t̂s , depending on the spectrum of v̂s , extends from ts = 0 to ts = t . As
pointed out by Galapon [16], for such a bounded time operator, in the rigged Hilbert space
of scattering theory [17, 18] the objections raised by Pauli [15] against the existence of a
self-adjoint time operator (having to do with the non-existence of a conjugate Hamiltonian
operator with a point spectrum) do not apply.

We can now use equation (21), to construct the rest-energy operator in the proper-time
representation as,

〈ts |Ês |�〉 =
∫

dt ′〈ts |
{∑

i

Ei |Ei〉〈Ei | +
∫

dEE|E〉〈E|
}

|t ′〉〈t ′|�〉

= |a|2
∫

dt ′
{∑

i

Ei e−iEi(ts−t ′)/h̄ +
∫

dE E e−iE(ts−t ′)/h̄

}
〈t ′|�〉

= ih̄
∂

∂ts

∫
dt ′〈ts |

{∑
i

|Ei〉〈Ei | +
∫

dE|E〉〈E|
}

|t ′〉〈t ′|�〉

= ih̄
∂

∂ts

∫
dt ′〈ts |t ′〉〈t ′|�〉 = ih̄

∂

∂ts
〈ts |�〉, (22)

where Ei are the discrete eigenvalues of Ês . The [t̂s , Ês] = −ih̄ commutation relation
follows immediately from equation (22), leading in the usual fashion [3] to the corresponding
uncertainty relations.

The ts = t eigenvalue is of special interest because it occurs when vs = 0, i.e., when we
equate the s-inertial frame with the reference frame. In this case Ê the total-energy operator
and Ês the rest-energy operator coincide. We thus have as a special case of equation (21) that

〈t |E〉 = a e−iEt/h̄. (23)

and as a special case of equation (22) that

〈t |Ê|�〉 = ih̄
∂

∂t
〈t |�〉. (24)

Note however that t in contrast to t̂s is a number and not an operator. We have thus obtained
the quantum-mechanical evolution equations (equation (1)).

In special relativity, the substitution of the Ê2 = Ê2
s + p̂2

s c
2 on the rhs of equation (1),

together with equation (12), leads to the time-dependent Klein–Gordon [27] or Dirac
[20, 27] equations. In the non-relativistic limit the substitution of Ê = p̂2/2m together with
equation (12) leads to the time-dependent Schrödinger equation.

4. Extensions to accelerating systems

So far we have treated inertial systems in which vs was constant. For accelerating systems
for which vs(t) is a non-constant function of time, the definition of the proper time must be
modified. Realizing that the speed of light in any frame must still be conserved, the differential
relation

dts = dt
(
1 − v2

s (t)
/
c2

) 1
2 (25)

7
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still holds. This means that

ts =
∫ t

0
dt ′

(
1 − v2

s (t
′)
/
c2

) 1
2 . (26)

Alternatively we can consider the differential transformed time

dts = (dt − dxs vs(t)/c
2)

/(
1 − v2

s (t)
/
c2

) 1
2 . (27)

In either case, the velocity of time ṫs remains the same because in either differential equation
for dts , we have that

ṫs = (
1 − v2

s (t)
/
c2

) 1
2 . (28)

Thus our entire analysis expressed in proper time and rest energy is correct for non-inertial
systems as is and we obtain that

〈ts |Ês |�〉 = ih̄
∂

∂ts
〈ts |�〉. (29)

However we can no longer make the transition to the total energy and the ‘time’ because the
system linked to the particle is no longer an inertial system and cannot serve as a ‘reference
frame’.

We note that for accelerating frames, 〈ts |Es〉, although remaining the same as a function
of ts , assumes a different form as a function of t. We have that

〈ts |Es〉 = a exp(−iEsts/h̄) = a exp

(
−iEs

∫ t

0
dt ′

(
1 − v2

s (t
′)
/
c2

) 1
2
/
h̄

)

= a exp

(
−i

∫ t

0
dt ′ L(t ′)/h̄

)
. (30)

The motion no longer represents a plane wave in spacetime but a motion in a curved space! It
is instructive to derive a semi-classical relativistic equation for the motion of an accelerating

particle. Using the relation E(t ′) = Es

[
1 − v2

s (t
′)
/
c2

]− 1
2 we have that

exp(−iEsts/h̄) = exp

(
−i

∫ t

0
dt ′E(t ′)

[
1 − v2

s (t
′)
/
c2

]/
h̄

)

= exp

(
−i

∫ t

0
dt ′E(t ′)/h̄

)
exp

(
i
∫ t

0
dt ′E(t ′)v2

s (t
′)
/
(c2h̄)

)
. (31)

Dropping the s index as applying to the velocity and momentum, and using the definition
v(t ′) = dx ′/dt ′ and the classical relativistic relation p(x ′) = E(t ′)v(t ′)/c2, we have that

exp(−iEsts/h̄) = exp

(
−i

∫ t

0
dt ′E(t ′)/h̄

)
exp

(
i
∫ x

0
dx ′p(x ′)/h̄

)
. (32)

We have thus derived a joint spatio-temporal semiclassical form of the relativistic wavefunction
in curved spaces.

5. Discussion

In this paper we have derived the special-relativistic energy–time transformation matrices
and the quantum evolution equations. A dynamical quantum-mechanical equation valid for
accelerating frames was also derived. The derivation involved the proper-time operator,
defined as a function of v̂s , the velocity operator, and depending parametrically on t, the time
measured in a selected inertial frame, the so-called reference frame.

8
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The present derivation is the only one to our knowledge where the quantum-dynamical
equations are derived from within conventional quantum mechanics, making no new postulates.
It relies only on the basic structure of the rigged Hilbert space of quantum mechanics;
on the linear correspondence between observables and quantum operators; on canonical
invariance with respect to transformation between pairs of conjugate variables; and on
Lorentz invariance. It is interesting to note that the only aspect of canonical invariance
used here is that the canonically transformed conjugate pair of variables describe the same
point in phase space as the untransformed conjugate pair.

Applications of equations (29)–(32) to quantum dynamics of highly accelerating systems
subject to gravitational potentials are considered elsewhere [28].
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